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PML absorbing boundary conditions for the linearized and
nonlinear Euler equations in the case of oblique mean flow
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SUMMARY

For the case of uniform mean flow in an arbitrary direction, perfectly matched layer (PML) absorbing
boundary conditions are presented for both the linearized and nonlinear Euler equations. Although linear
perfectly matched side layers with an oblique mean flow have been studied in previous works, we propose
in the present paper a construction of corner layer equations that are dynamically stable. Stability issues
are investigated by examining the dispersion relations of linear waves supported by the corner layer
equations. For increased efficiency, a pseudo mean flow is included in the derivation of the PML equations
for the nonlinear case. Numerical examples are given to support the validity of the proposed equations.
Specifically, the linear PML formulation is tested for the case of acoustic, vorticity, and entropy waves
traveling with an oblique mean flow. The nonlinear formulation is tested with an isentropic vortex moving
diagonally with a constant velocity. Copyright q 2008 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The use of a nonreflecting boundary condition is imperative when considering aeroacoustic prob-
lems with an open physical domain, as reflections originating from the numerical boundaries
can compromise the accuracy of the solution within the computational domain. Further, as the
accuracy of spatial and temporal discretizations increases, the need for greater accuracy at the
boundaries increases accordingly. The perfectly matched layer (PML) technique has proven effec-
tive in eliminating boundary reflections with sufficient accuracy, as was first proposed by Bérenger
for Maxwell’s equations [1]. However, most of the work done for PML in fluid dynamics has
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been specific to mean or background flow that is perpendicular to a boundary, as is the case,
for example, in [2–7]. Previous works on the PML for oblique flows include [8–10]. In [8], the
PML for a mean flow oblique to the Euler and PML interface was given. However, the equations
for the corner layers were not derived. In [9], only the acoustic waves were considered for an
oblique mean flow. In [10], a new formulation of PML for the linear Euler equations based on the
Smith factorizations was given in which the direction of the mean flow can be arbitrary. However,
whether this approach can be extended to nonlinear equations remains to be seen. The goal of
this paper is to apply the PML technique to the more general case of mean flow in an arbitrary
direction for both the linear and the nonlinear applications. Such a formulation can be useful in
many practical applications, such as when an aircraft travels at a nonzero angle of attack, when a
slant boundary is present, or when a transformed coordinate is used in the computation.

The challenge, when applying the PML technique to such a problem, lies in correcting the
inconsistencies in the phase and group velocities [2, 4, 7, 11]. A simple space–time transformation
has been shown necessary and effective in removing the inconsistency for acoustic waves alone
[7], but when inconsistencies also arise in the group and phase velocities of the vorticity and
entropy waves, as is the case when dealing with an oblique flow, no such transformation has been
found. Our approach in this paper is to derive the side and corner layers independently. The side
layers will be perfectly matched, while linear stability analysis will show the corner layers to be
dynamically stable.

The next section examines the dispersion relations of linear waves supported by the Euler
equations in the presence of an oblique mean flow. The derivations of the PML equations for the
linearized and the nonlinear Euler equations are then presented, followed by an examination of
the stability of the derived corner equations. Finally, numerical examples are given to show the
effectiveness of the proposed equations.

2. DISPERSION RELATIONS OF LINEAR WAVES

To understand the challenge of forming PML equations for an oblique mean flow, consider the
two-dimensional linearized Euler equations with components of mean flow (Mx ,My)
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�u
�y

=0 (1a)
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0 0 1 My
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⎟⎟⎟⎟⎠ (1b)

where � is the density, u and v are velocity components, p is the pressure, and Mx and My are
the Mach numbers in the x- and y-directions, respectively.

For linear waves, the dispersion relations for (1a) are known to be

(�−Mxkx −Myky)
2−k2x −k2y =0 (2)
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Figure 1. Dispersion relations of linear waves for My =0 (left) and My �=0 (right).

for acoustic waves and

�−Mxkx −Myky =0 (3)

for vorticity and entropy waves. The left side of Figure 1 plots these relations for � as a function
of kx for the case My =0 and for a fixed ky . In quadrants II and IV, where phase velocity is
negative, segments of the curves for the acoustic waves have positive group velocity, which is not
consistent with the negative phase velocity. These inconsistencies will lead to numerical instability
if not corrected before the PML change of variables is applied in the derivation [2, 7]. Notice that
because the inconsistencies only appear in the acoustic waves, a linear space–time transformation
like those used in [7, 11–13] is sufficient to correct the problem. However, in the case of oblique
flow, where My is nonzero, inconsistencies appear not only in the acoustic waves, but also in the
vorticity and the entropy waves, as shown on the right of Figure 1. In such a case, no transformation
has been found to remove the inconsistencies for all three types of waves.

An alternate approach is to derive the side and corner layers independently. Figure 2 illustrates
the placement of proposed x-, y-, and corner layers for a truncated domain. In [8], where only
x-layers are present, it is suggested that by replacing the time derivative with a material derivative
involving My , the PML derived for My =0 can still be used. Unfortunately, when both x- and
y-layers are present, corner layers will inevitably exist, and while a moving-frame can be used to
eliminate the part of the mean flow in the transverse direction, no such remedy can be used for
the corner layers. In the present formulation, by deriving the x- and y-layers separately, corner
layers will be formed as a combination of the x- and y-layers. The derivations are presented in
the following sections.

3. PML FOR THE LINEARIZED EULER EQUATIONS WITH OBLIQUE MEAN FLOW

As mentioned above, PML equations for the x- and y-layers will be given first. Starting with the
x-layer, we begin the derivation for the linearized Euler equations by applying a moving-frame
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Figure 2. Separate layers for x and y allow us to effectively remove all
inconsistencies in phase and group velocities.

change of variables

x̂= x (4a)

ŷ= y−Myt (4b)

t̂= t (4c)

that gives

�
�x

= �
�x̂

(5a)

�
�y

= �
�ŷ

(5b)

�
�t

= �
�t̂

−My
�
�ŷ

(5c)
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The linearized Euler equation (1a) then becomes

�u
�t̂

−My
�u
�ŷ
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�x̂
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=0 (6)

or
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+B0
�u
�ŷ

=0 (7)

where

B0=B−My I (8)

Equation (7) is equivalent to the case where My =0. Therefore, the PML equations presented in
[7] can be readily applied, giving

�u
�t̂

+A
�u
�x̂

+B0
�u
�ŷ

+�xB0
�q1
�ŷ

+�xu+�x�xAu=0 (9a)

�q1
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=u (9b)

where

�x = Mx

1−M2
x

(10)

and �x is the absorption coefficient, which depends on x only. Reverting back to the original time
and space coordinates, we obtain

�u
�t

+A
�u
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+B
�u
�y

+�xB0
�q1
�y

+�xu+�x�xAu=0 (11a)

�q1
�t

+My
�q1
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=u (11b)

Using a similar approach, we find the y-layer equations:
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where

A0=A−Mx I (13)

and

�y = My

1−M2
y

(14)
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and �y is another absorption coefficient, which depends on y only. In the above, q1 and q2 are
the auxiliary variables for x- and y-layers, respectively.

For equations to be used in the corner layers where both �x and �y are nonzero, we combine
the x- and y-layer equations as follows:

�u
�t

+A
�u
�x

+B
�u
�y

+�yA0
�q2
�x

+�xB0
�q1
�y

+(�x +�y)u+�x�xAu+�y�yBu=0 (15a)

�q1
�t

+My
�q1
�y

+�yq1=u (15b)

�q2
�t

+Mx
�q2
�x

+�xq2=u (15c)

where the �yq1 and �xq2 terms, in (15b) and (15c), respectively, have been added for stability.
Clearly, when �y or �x is zero, Equation set (15) reduces to the x- or y-layer equation sets, (11)
or (12), respectively. Although other forms for the added terms are possible, we find the present
version given in (15b) and (15c) simple and sufficient for stability. Although the side layers are
perfectly matched to the interior Euler domain, the interfaces between the corner and side layers
are no longer perfectly matched. However, as we will see later, the performance of the corner layer
is numerically satisfactory. We will also show later that the corner layer equations are dynamically
stable. A detailed stability analysis is presented in Section 5.
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Figure 3. Contours of maximum imaginary part of � for �x =�y =2 and |kx |, |ky |�20.
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Figure 4. Contours of maximum imaginary part of � for Mx =My =0.5 and |kx |, |ky |�20.
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Figure 5. Existence of positive �i shows that the added terms are necessary for
the stability of the corner equations.
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Figure 7. Contours of maximum imaginary part of � for U0=V0=0.5 and |kx |, |ky |�20.
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4. PML FOR THE NONLINEAR EULER EQUATIONS WITH OBLIQUE MEAN FLOW

We will use a similar approach in formulating PML equations for the nonlinear Euler equa-
tions, considering x- and y-layers individually, then constructing stable corner layers. For easy
implementation, the Euler equations are kept in conservation form:

�u
�t

+ �F1(u)

�x
+ �F2(u)

�y
=0 (16)

with
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(17)

and

h=e+ p

�
, p=(�−1)�

(
e− u2+v2

2

)
(18)

where � is the density, u and v are components of velocity, p is the pressure, and e is the energy.
We also assume that an oblique background flow is moving with a constant velocity (U0,V0). The
velocities are nondimensionalized by the speed of sound.

We can improve efficiency by designing the PML to absorb only the fluctuating part of u, which
is often smaller in amplitude than the total variable itself. Therefore, we begin by partitioning the
solution inside the PML domain into two parts as follows:

u= ū+u′ (19)

where u′ is the time-dependent perturbation, which we seek to absorb, and ū is the time-independent
oblique background flow, which satisfies the steady Euler equations,

�F1(ū)

�x
+ �F2(ū)

�y
=0 (20)

The part ū is an approximation of the actual mean flow. A more thorough discussion of pseudo
mean flow can be found in [13]. The part u′ will then be the focus of our PML equations, as it is
the part we seek to absorb. The equation for u′ then becomes

�u′

�t
+ �[F1−F̄1]

�x
+ �[F2−F̄2]

�y
=0 (21)

where the shorthand notations F1=F1(u), F̄1=F1(ū), F2=F2(u), and F̄2=F2(ū) have been used.
To construct the x-layer equations, we now introduce a moving-frame change of variables

x̂= x (22a)

ŷ= y−V0t (22b)

t̂= t (22c)
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Figure 8. Contours of density at times t=0, 70, 100, and 200, plotted at levels 0.01:0.01:0.05, 0.2:0.2:1,
−0.1 :−0.1 :−1, and −0.01 :−0.01 :−0.05, showing three entropy waves and an acoustic wave located at

the center. The mean flow Mach numbers are Mx =My =0.5, and D=10�x , �=3.

that gives

�u′

�t̂
+ �[F1−F̄1]

�x̂
+ �[F2−F̄2−V0u′]

�ŷ
=0 (23)

In the moving-frame, the background flow in the vertical direction is stationary; hence, the PML
equations are the same as those given in [13], which become

�u′

�t̂
+ �[F1−F̄1]

�x̂
+ �[F2−F̄2−V0u′]

�ŷ
+�xq1+�x�x [F1−F̄1]=0 (24a)

�q1
�t̂

+ �[F1−F̄1]
�x̂

+�xq1+�x�x [F1−F̄1]=0 (24b)
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where

�x = U0

1−U 2
0

(25)

Because we are dealing only with the x-layers, �y has been set to zero. Reverting back to the
original time and space coordinates, we arrive at the nonlinear x-layer equations:

�u
�t

+ �[F1−F̄1]
�x

+ �[F2−F̄2]
�y

+�xq1+�x�x [F1−F̄1]=0 (26a)

�q1
�t

+ �[F1−F̄1]
�x

+V0
�q1
�y

+�xq1+�x�x [F1−F̄1]=0 (26b)

A similar derivation leads to the y-layer equations:

�u
�t

+ �[F1−F̄1]
�x

+ �[F2−F̄2]
�y

+�yq2+�y�y[F2−F̄2]=0 (27a)

�q2
�t

+U0
�q2
�x

+ �[F2−F̄2]
�y

+�yq2+�y�y[F2−F̄2]=0 (27b)

where

�y = V0
1−V 2

0

(28)
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Figure 10. Top figure plots PML and reference solutions of density at the point (45,45)
as a function of time. Bottom figure plots the difference between the two solutions at the

same point as a function of time.

and �x has been set to zero. Again, corner layers will be constructed by combining Equation sets
(26) and (27):

�u
�t

+ �[F1−F̄1]
�x

+ �[F2−F̄2]
�y

+�xq1+�yq2+�x�x [F1−F̄1]+�y�y[F2−F̄2]+�x�y(u− ū)=0

(29a)

�q1
�t

+ �[F1−F̄1]
�x

+V0
�q1
�y

+(�x +�y)q1+�x�x [F1−F̄1]=0 (29b)
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Figure 11. Contours of density at times t=0, 50, 60, and 70, plotted at levels
0.01:0.01:0.05, 0.05:0.05:1, −0.1 :−0.1 :−1, and −0.01 :−0.02 :−0.05. The mean

flow Mach numbers are Mx =My =0.5, and D=10�x , �=3.

�q2
�t

+U0
�q2
�x

+ �[F2−F̄2]
�y

+(�x +�y)q2+�y�y[F2−F̄2]=0 (29c)

For stability, the terms �x�y(u− ū), �yq1, and �xq2 have been added to Equations (29a), (29b),
and (29c), respectively. These additional terms are chosen so that they vanish within the side
layers. That is, when �y or �x is zero, Equation set (29) reduces to the x- or y-layer equation
sets, (26) or (27), respectively. Although there are other choices of additional terms that would
also disappear in the side layers, the current choice will make the layer stable, as will be shown
below. The following section presents the details of the stability analysis for the corner equations
presented in Sections 3 and 4.
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5. STABILITY ANALYSIS OF CORNER EQUATIONS

We will first present the linear stability analysis of the corner layer equations given in (15). Stability
is tested by substituting ⎛

⎜⎝
u

q1

q2

⎞
⎟⎠=ei(kx x+ky y−�t)

⎛
⎜⎝

û

q̂1

q̂2

⎞
⎟⎠ (30)

into these linearized equations, which forms an eigenvalue problem for û, q̂1, and q̂2. Assuming
�x and �y to be constants, solutions for the resulting eigenvalue equation for � are checked for
positive imaginary parts for given values of kx and ky . If none of the eigenvalues has a positive
imaginary part, the system is known to be dynamically stable. Figure 3 shows the contours of the
maximum value of �i , the imaginary part of �, for subsonic values of Mx and My over the range
0�Mx ,My�0.95, given wavenumbers |kx |, |ky |�20. In this case, all values of �i are found to be
negative, indicating a stable system. Alternatively, Mx and My can be held constant, and contours
of maximum �i values for 0��x ,�y�5, |kx |, |ky |�20 can be plotted, as is done in Figure 4.
Again, all maximum imaginary eigenvalues are found to be negative, indicating that the proposed
equations are stable. To show the necessity of the terms �yq1 and �xq2 that have been added
to Equations (15b) and (15c), respectively, Figure 5 plots the maximum �i over subsonic Mach
numbers Mx and My for �x =�y =2.0 for equations equivalent to those given in (15) but with the
additional terms omitted. The existence of positive �i indicates that these terms are required to
maintain the stability of the corner equations.

A similar approach has been used to analyze the linear stability of the PML for the nonlinear
Euler equations, given in (29) and linearized around the background mean flow. Figures 6 and 7
show the results of such an analysis. Nonpositive maximum �i again indicates that the proposed
system is stable.

6. NUMERICAL EXAMPLES

6.1. Acoustic, vorticity, and entropy waves

We evaluate the effectiveness of a PML of width D for the linearized Euler equations by testing the
PML with acoustic, vorticity, and entropy waves traveling with mean flow (Mx ,My)=(0.5,0.5)
in the domain [−50,50]×[−50,50], discretized by �x=�y=1. Four initial waves are given as

�=e−(ln2) x
2+y2

16 +
3∑

n=1
e−(ln2) (x−xn )2+(y−yn )2

16 (31a)

u=
3∑

n=1
(y− yn)e

−(ln2) (x−xn )2+(y−yn )2

16 (31b)

v=−
3∑

n=1
(x−xn)e

−(ln2) (x−xn )2+(y−yn )2

16 (31c)

p=e−(ln2) x
2+y2

16 (31d)
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Figure 12. Top figure plots PML and reference solutions of density at the point
(45,30) as a function of time. Bottom figure plots the difference between the two

solutions at the same point as a function of time.

where � is the density, u and v are the x- and y-components of velocity, respectively, and p is
the pressure. The initial condition represents an acoustic pulse at (x, y)=(0,0) and entropy and

vorticity pulses at (x1, y1)=(25,0), (x2, y2)=
√
2
2 (25,25), and (x3, y3)=(0,25). In particular, the

vorticity and entropy waves will be convected toward the upper-right corner of the computational
domain.

The linearized Euler equation (1) is solved in the physical domain and Equations (15) are solved
in the added PML absorbing domains, as shown in Figure 8. The absorption coefficient �x is
defined

�x =�max

∣∣∣∣ x−x0
D

∣∣∣∣
�

(32)
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Figure 13. Maximum differences in density � between the numerical and reference solutions along x=±45
and y=±45 for varying PML widths, comparing the case where waves exit out of the side and corner

layers (top) with the case where waves exit out of the side layer only (bottom).

where x0 is the location of the interface between the Euler and PML domains. In this example,
x0=±50 for the PML at the right and the left boundaries, respectively. The coefficient �y is
similarly defined. Figure 8 shows the contours of density at times t=0,70,100, and 200 for a
PML of width D=10�x=10�y and absorption coefficient parameters �max=2 and �=3. The
waves appear to exit the domain with little reflection.

For a more quantitative evaluation, solutions along x=±45 and y=±45 are compared with those
from calculations on the larger domain [−400,400]×[−400,400]. Figure 9 plots as a function
of time the magnitude of the maximum difference between the two solutions for density along
the selected comparison points for varying values of D and �. This is equivalent to the reflection
coefficient for density, as the maximum amplitude is one. As the width of the PML increases,
there is a noticeable decrease in the reflection error. In particular, an increase in the PML width
has a significant effect on the reduction of reflection error before t=100, when the vortices are
absorbed by the side layers. The reflection errors are seen increased when the vorticity and the
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Figure 14. Contours of v-velocity at times t=0,1.5,2.0,2.5.

entropy pulses enter the corner layer, and the increase in the PML width has a smaller effect
on the reduction of reflection error. This confirms that the interfaces between the Euler domain
and the side layers are perfectly matched, whereas those between the corner and sides layers are
not. Despite this, reflection errors on the whole remain small for the duration of the tested time.
For further comparison, the top plot of Figure 10 shows the time history of density at the point
(45,45) for both the numerical and reference solutions. The solutions appear to be in very good
agreement. The bottom plot of Figure 10 is the difference between the numerical and reference
solutions at the same point as a function of time. The magnitude of this difference is smaller
than 10−3.

6.2. Vorticity and entropy waves at side layers

To see the effects of the unmatched corner layers on the accuracy, we modify the previous example
so that no waves exit out of the corner region. This is done by omitting the initial acoustic wave
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Figure 15. Reflection coefficient versus time for v-velocity along x=±0.9 and
y=±0.9 for U0=V0=0.5 and U ′

max=0.25.

that was initialized at (0,0) and the vorticity and entropy waves that were initialized at the point

(x2, y2)=
√
2
2 (25,25). The initial condition is therefore given as

�=e−(ln2) (x−25)2+y2

16 +e−(ln2) x
2+(y−25)2

16 (33a)

u= ye−(ln2) (x−25)2+y2

16 +(y−25)e−(ln2) x
2+(y−25)2

16 (33b)

v=−(x−25)e−(ln2) (x−25)2+y2

16 −xe−(ln2) x
2+(y−25)2

16 (33c)

p=0 (33d)

The remainder of the configuration is identical to the previous example. Figure 11 shows the
contours of density at times t=0,50,60, and 70.

To assess the accuracy, the solution of density at the point (45,30) is plotted against the larger
domain reference solution as a function of time in the top plot of Figure 12. The bottom plot
shows the difference between the two solutions at that same point. For this pointwise comparison,
the results are comparable to those of the previous example, with the order of magnitude for the
pointwise difference at around 10−3. The maximum difference error for density along the points
x=±45 and y=±45 is plotted in Figure 13 for varying PML widths. With no waves exiting out
of the corner, there is a noticeable decrease in the maximum difference.
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Figure 16. Top figure plots PML and reference solutions of v-velocity at the point
(0.9,0.9) as a function of time. Bottom figure plots the difference between the two

solutions at the same point as a function of time.

6.3. Isentropic vortex

We will test the nonlinear PML equations for an exact solution of the nonlinear Euler equations,
a convecting vortex of the form

⎛
⎜⎜⎜⎜⎝

�(x, t)

u(x, t)

v(x, t)

p(x, t)

⎞
⎟⎟⎟⎟⎠=

⎛
⎜⎜⎜⎜⎝

0

U0

V0

0

⎞
⎟⎟⎟⎟⎠+

⎛
⎜⎜⎜⎜⎝

�r (r)

−ur (r)sin�

ur (r)cos�

pr (r)

⎞
⎟⎟⎟⎟⎠ (34)
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where r =√
(x−U0t)2+(y−V0t)2, and for a given ur (r) and �r (r), the pressure pr (r) is given as

d

dr
pr (r)=�r (r)

u2r (r)

r
(35)

This solution to the nonlinear Euler equations advects with the constant velocity (U0,V0). For this
example, we will assume a velocity distribution of the form

ur (r)= U ′
max

b
re(1/2)(1−r2/b2) (36)
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Figure 19. Contours of v-velocity at times t=0,1.5,2.0,2.5.

where U ′
max is the maximum velocity of ur (r) at r =b. For isentropic flow, we enforce the

relationship

pr = 1

�
��
r (37)

that leads to the following density and pressure distributions:

�r (r)=(1− 1
2 (�−1)U

′2
maxe

1−r2/b2)1/(�−1) (38)

pr (r)= 1

�
(1− 1

2 (�−1)U
′2
maxe

1−r2/b2)�/(�−1) (39)
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Figure 20. Top figure plots PML and reference solutions of v-velocity at the point (0.9,0.9)
as a function of time. Bottom figure plots the difference between the two solutions at the

same point as a function of time.

Figure 14 shows the contours of v-velocity at t=0, 1.5, 2.0, and 2.5. Constant background velocity
was taken to be (U0,V0)=(0.5,0.5), and in the above distributions, U ′

max=0.25, b=0.2, and
�=1.4. The PML width was chosen to be 10 grid points, and the entire domain [−1.2,1.2]×
[−1.2,1.2] was discretized by �x=�y=0.02. For the PML absorption coefficients, �x and �y ,
parameter values �max=20 and �=4 were chosen in the form (32). To test the accuracy, numerical
solutions were compared with the reference solutions computed on the larger domain [−6.2,6.2]×
[−6.2,6.2]. The reflection coefficient for v-velocity is calculated as the maximum difference
between the numerical and reference solutions along x=±0.9 and y=±0.9 normalized by the
maximum amplitude U ′

max and is plotted in Figure 15 as a function of time. The top plot of
Figure 16 plots the time history of the v-velocity component of the numerical and reference
solutions at the point (0.9,0.9). Very good agreement is seen between the two solutions. The
bottom plot of Figure 16 is the difference between the numerical and reference solutions at the
same point as a function of time. The magnitude of the difference is approximately 10−3.
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Figure 21. Reflection coefficients versus time for v-velocity along x=±0.9 and y=±0.9 for U0=V0=0.5,
U ′
max=0.25, and varying PML widths. Differences are compared for waves exiting through either the

corner layer (top) or the side layer (bottom).

Satisfactory results were also achieved for various cases of higher strength vortices. Taking
(U0,V0)=(0.2,0.2), vortex strengths U ′

max=1.0U0,1.2U0,1.4U0,1.6U0 were tested. The
maximum difference between the numerical and large domain calculations is plotted in Figure 17
for each case. For comparison, the errors for the cases of weaker vortices, U ′

max=0.25U0,0.5U0
are also plotted. In general, the difference increases with the strength of the vortex. Note that
when U ′

max>U0, part of the vortex has a velocity opposite to the uniform background flow.
When U ′

max is relatively small compared to U0, error levels are close to those of linearized cases.
The peak errors appear to scale with the fourth power of the amplitude, which is shown in
Figure 18.

The accuracy of the calculation for the vortex exiting through the unmatched corner layer is
again compared with the accuracy of a calculation where the vortex exits out of the side layer only.
This side layer calculation is carried out by extending the domain in the positive y-direction, so that
the new domain is [−1.2,1.2]×[−1.2,3.2]. Contour plots are given for v-velocity in Figure 19,
where again there is no visible reflection. In the pointwise comparisons given in Figure 20, a
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small decrease in the magnitude of the difference error is seen in comparison with the previous
calculation. Finally, in Figure 21, the reflection coefficients for v-velocity for this and the previous
calculation are compared for varying PML widths. In both cases, an increase in the PML width
does not result in as significant a decrease in reflection errors as that observed in the case of the
matched linear side layer in Figure 13. This is expected as the PML method does not result in
perfect matching for the nonlinear case.

7. CONCLUSIONS

PML absorbing boundary conditions for the linearized and the nonlinear Euler equations have
been derived in the form of x-, y-, and corner layer equations for the case of mean flow in an
arbitrary direction. The x- and y-layer equations are perfectly matched for linear waves, whereas
the corner layer equations were shown to be stable. The proposed equations performed well in the
given examples.

The capability of PML equations to absorb the outgoing waves traveling with an oblique mean
flow is an important step in the movement toward modeling effective nonreflecting boundary
conditions for increasingly realistic aeroacoustic problems. Such capability will allow for a number
of new configurations to be tested numerically.
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